A Novel Asymmetric Synthesis of (-)-cis-1, 3-Dibenzylhexahydrofuro[3, 4-d]imidazole-2,4-dione

Wei Hua HAN, Hao Ran LI*

Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract: (-)-*cis*-1, 3-Dibenzyl-hexahydrofuro[3, 4-d]imidazole-2, 4-dione was prepared by a new synthesis method from meso dicarboxylic acid and dehydroabietylamine by asymmetric reduction in good yield with up to 91.6% e.e. value.

Keywords: Synthesis, lactone, dehydroabietylamine, reduction, asymmetric.

Desymmetrisation of meso-compounds enables a rapid access to very useful chiral materials possessing multiple asymmetric centers. In this respect, a useful class of starting materials is cyclic imides, such as the synthesis of optical activated *cis*-1, 3-dibenzylhexahydrofuro [3, 4-d] imidazole-2, 4-dione. Up to now, the synthesis of (+)-*cis*-1, 3-dibenzylhexahydrofuro[3, 4-d]imidazole-2, 4-dione (this compound being herein after referred to as (+)-lactone) as an important intermediate of d-biotin have been reported in a lot of methodologies¹, but the synthesis of (-)-*cis*-1, 3-dibenzylhexahydrofuro[3, 4-d]imidazole-2, 4-dione (this compound being herein after referred to as (-)-lactone) has scarcely been reported. Here we report a new synthesis method of (-)-lactone as showed in **Scheme 1**.

Scheme 1 The asymmetric synthesis of optical lactone

(a) R*-NH₂; (b) NaBH₄; (c)HCl

^{*} E-mail:lihr@zju.edu.cn

Starting from cis-1, 3-dibenzyl-2-oxo-imidazolidine-4, 5-dicarboxylic acid 1, the compound 2 was prepared in good yield by dehydration from 1 and dehydroabietylamine. Followed by selective reduction of carbonyl group by NaBH₄, compound 2 was converted to hydroxy amide 3. Subsequent hydrolyzation by HCl and then refluxing to dehydration, we obtained lactone 4 in good yield with up to 91.6% e.e. value. The product 4 was purified by recrystallization and characterized by IR, ¹HNMR. The spectral data were identical with that of the (+)-lactone, but e.e. value was just reverse to that of (+)-lactone.

Acknowledgment

This work was supported by the Natural Science Fundation of Zhejiang Province of China (No: RC01051).

References and Notes

- P. J. De Clerq, *Chem. Rev.*, **1997**, *97*, 1755.
 For compound **4**, mp 109-110°C; [α]_D²⁰ -54.1 (c 1, CHCl₃); ¹HNMR (500MHz, CDCl₃, δ ppm): 7.31-7.38(m, 10H, 2C₆H₅-), 5.03(d,1H, *J*=14.77Hz, H-3), 4.62(d, 1H, *J*=15.15Hz, H-2), 4.37 (t, 1.32); ¹HNMR (500MHz, CDCl₃), δ ppm): 7.31-7.38(m, 10H, 2C₆H₅-), 5.03(d,1H, *J*=10.77Hz, H-3), 4.62(d, 1H, *J*=15.15Hz, H-2), 4.37 (t, 1.32); ¹HNMR (500MHz, CDCl₃), δ ppm): 7.31-7.38(m, 10H, 2C₆H₅-), 5.03(d,1H, 2C₆H 2H, J=28.67Hz, H-1, H-4), 4.15(s, 4H, 2Ph-CH₂-); IR (KBr, cm⁻¹): 3414, 2920, 1772, 1706.9, 1637, 1617, 1415, 1211, 753, 702.

Received 18 November, 2003